Home
Class 12
MATHS
Let m be the number of solutions of sin...

Let m be the number of solutions of `sin(2x)+cos(2x)+cosx+1=0` in `0 lt x lt (pi)/(2) and n = sin [tan^(-1)(tan((7pi)/(6)))+cos^(-1)(cos((7pi)/(3)))]`, then find the value of `(m^(2)+n^(2)+m+n+4)`

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(-1)(sin""(2pi)/(3))+cos^(-1)(cos""(7pi)/(6)) is

The value of sin{tan^(-1) (tan 7pi/6) + cos^(-1)(cos 7pi/3)} is _____.

the number of solutions of cos^(-1)(1-x)+m cos^(-1)x=(n pi)/(2) where m>0,n<=0

Find the number of solution of sin^(2)x cos^(2)x=1+cos^(2)x sin^(4)x in the interval [0,2 pi].

If m^(2) cos.(2pi)/(15)cos. (4pi)/(15) cos. (8 pi)/(15) cos. (14pi)/(15)=n^(2) , then find the value of (m^(2)-n^(2))/(n^(2)) .

If sin x =(3)/(5) " and " 0 lt x lt (pi)/(2) find the value of tan (x)/(2)

sin m((pi)/(2)+x)+cos n((pi)/(2)-x)

If tan x = -(4)/(3), (pi)/(2) lt x lt pi , then find the value of sin(x/2), cos(x/2) and tan(x/2) .

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is