Home
Class 12
MATHS
Find the value of lim(n to oo) (tan(sum...

Find the value of `lim_(n to oo) (tan(sum_(r=1)^(n) tan^(-1)((4)/(4r^(2)+3))))`.

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo)sum_(r=1)^(n)cot^(-1)(r^(2)+3//4) is

The value of sum_(r=1)^(oo)tan^(-1)((4)/(4r^(2)+3))=

value of lim_ (n rarr oo) sum_ (r = 1) ^ (n) tan ^ (- 1) ((1) / (2r ^ (2))) is

The value of the lim_(n rarr oo)tan{sum_(r=1)^(n)tan^(-1)((1)/(2r^(2)))}_( is equal to )

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

Find the value of lim_(n rarr oo)sum_(r=1)^(n)(r^(2))/(n^(3)+n^(2)+r)

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :