Home
Class 12
MATHS
Prove the following: tan^(-1)(1/4)+t...

Prove the following: `tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)`

A

`(1)/(2) cos^(-1)((3)/(5))`

B

`(1)/(2) sin^(-1)((3)/(5))`

C

`(1)/(2) tan^(-1)((3)/(5))`

D

`tan^(-1)((1)/(2))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(1/3)+tan^(-1)(1/5)=(1)/(2)cos^(-1)(33/65)

Prove the following: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove the following: tan^(-1)1/7+2\ tan^(-1)1/3=pi/4

tan^(-1)(1)/(4)+tan^(-1)(2)/(9)=tan^(-1)(1)/(2)

Prove that: tan^(-1)((1)/(4))+tan^(-1)((2)/(9))=(1)/(2)cos^(-1)((3)/(5))

Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/(sqrt(5)))

Prove the following: 2\ tan^(-1)3/4-tan^(-1)(17)/(31)=tan^(-1)pi/4

Prove the following: 4tan^(-1)(1)/(5)-tan^(-1)(1)/(70)+tan^(-1)(1)/(99)=(pi)/(4)2tan^(-1)(1)/(5)+sec^(-1)(5sqrt(2))/(7)+2tan^(-1)(1)/(8)=(pi)/(4)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)