Home
Class 12
MATHS
Solve tan^(-1)2x+tan^(-1)3x=pi/4....

Solve `tan^(-1)2x+tan^(-1)3x=pi/4`.

Text Solution

Verified by Experts

The correct Answer is:
`x=(1)/(6)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the solution of tan^(-1) 2x +tan^(-1) 3x = pi/4 , x gt 0

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation tan^(-1)2x+tan^(-1)3x=(pi)/(4)

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

Solve : tan^(-1) 4x +tan^(-1)6x = pi/4

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

The number of solutions of equation tan^(-1)2x+tan^(-1)3x=pi/4 is (a) 2 (b) 3 (c) 1 (d) none of these

IF tan ^(-1) 2x + tan ^(-1) 3x =(pi)/(4) , then x=