Home
Class 12
MATHS
Evaluate, underset(xto0)"lim"(sqrt(2)-sq...

Evaluate, `underset(xto0)"lim"(sqrt(2)-sqrt(1+cosx))/(sin^(2)x)`

Text Solution

Verified by Experts

The correct Answer is:
`1/(4sqrt(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate, lim_(xto0) (sqrt(2)-sqrt(1+cosx))/(sin^(2)x)

The value of underset(x to 0)lim (sqrt(1+x^(2))-sqrt(1-x^(2)))/(x^(2)) is

Evaluate : lim_(x to 0) (sqrt(5)-sqrt(4+cosx))/(3sin^(2)x) .

Evaluate the limit: lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

Evaluate lim_(xto0) (sqrt(2+x)-sqrt(2))/(x).

Find the value of lim_(x rarr0)(sqrt(2)-sqrt(1+cos x))/(sin^(2)x)

If the value of underset(x to 0)lim (sqrt(2+x)-sqrt2)/(x)" is equal to "1/(a sqrt2) then 'a' equals

Evaluate : underset( x rarr0 ) ("lim") ( sqrt( ( 1+sin 3x))-1)/(ln ( 1+ tan 2x))

Evaluate lim_(xto-1^(+))(sqrt(pi)-sqrt(cos^(-1)x))/(sqrt(1+x)).