Home
Class 12
MATHS
lim(thetato0)(1-cos4theta)/(1-cos6theta)...

`lim_(thetato0)(1-cos4theta)/(1-cos6theta)` is equal to

Text Solution

Verified by Experts

The correct Answer is:
43832
Promotional Banner

Similar Questions

Explore conceptually related problems

What is lim_(thetato0)(sqrt(1-costheta))/(theta) equal to?

Evaluate the following : lim_(theta to 0)(1-costheta)/(1-cos3theta)

Evaluate the following limit: (lim)_(theta rarr0)(1-cos4 theta)/(1-cos6 theta)

If a=min {x^2+4x+5:x in R} and b=lim_(thetato 0) (1-cos 2theta)/(theta^2) , then the value of sum_(r=0)^(n) .^nC_ra^rb^(n-r) , is

The value of (sin2 theta+sin4 theta)/(1+cos2 theta+cos4 theta) is equal to

(sin theta)/(1-cot theta)+(cos theta)/(1-tan theta) is equal to (a) 0 (b) 1(c)sin theta+cos theta(d)sin theta-cos theta

If 5tan theta=4, then (5sin theta-3cos theta)/(5sin theta+2cos theta) is equal to 0 (b) 1 (c) (1)/(6)(d)6

lim_(theta rarr0)(1-cos theta)/(sin^(2)2 theta)

1-(sin^(3)theta)/(sin theta+cos theta)-(cos^(3)theta)/(sin theta+cos theta) is equal to