Home
Class 12
MATHS
If f(x)=x^(100)+x^(99)+……+x+1, then f(1)...

If` f(x)=x^(100)+x^(99)+……+x+1`, then `f(1)` is equal to

A

99

B

100

C

101

D

51

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(x-1)/(x+1) then f(1) is equal to

If f(x)=x^(3)+(1)/(x^(3)), then f(x)+f((1)/(x)) is equal to

If f(x)=1-x^(2)-x^(3)+-x^(99)+x^(100) then f'(1) equals 150 b.-50 c.-150 d.50

If f(x) = 1/x , then f(a)/f(a + 1) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=x^(2)-x^(-2) then f((1)/(x)) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x)=|(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x(x-1))|, then f(100) is equal to - (i)0 (ii)1 (iii)100 (iv)-100