Home
Class 12
MATHS
If f(x) = (tanx)/(x-pi), then lim(xto(pi...

If `f(x) = (tanx)/(x-pi)`, then `lim_(xto(pi))f(x)=`……………….

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) = (tanx)/(x-pi) , then lim_(xrarr(pi))f(x)= ……………….

If f(x)=(tanx)/(x) , then find lim_(xto0)([f(x)]+x^(2))^((1)/([f(x)])) , where [.] and {.} denotes greatest integer and fractional part function respectively.

If f(x) = e^(x) , then lim_(xto0) (f(x))^((1)/({f(x)})) (where { } denotes the fractional part of x) is equal to -

Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))) , then lim_(xto1^(-))f(x)=0 and lim_(xto2^(-))f(x)=2 Statement 2: lim_(xtooo)cot^(-1)x=0 and lim_(xto -oo)cot^(-1)x=pi

If f(x) = 0 is a quadratic equation such that f(-pi) =f(pi) = 0 and f(pi/2) = -(3pi^(2))/4 , then : lim _(x to - pi ) f(x)/(sin (sin x))=

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

If |f(x)|lex^(2), then prove that lim_(xto0) (f(x))/(x)=0.