Home
Class 12
MATHS
Let f(x) = x(-1)^([1//x]); x != 0 where ...

Let `f(x) = x(-1)^([1//x]); x != 0` where [.] denotes greatest integer function, then `lim_(x rarr 0) f (x)` is :

A

Does not exist

B

2

C

0

D

-1

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x(-1)^([1/x]);x!=0 where [.] denotes greatest integer function,then lim_(x rarr0)f(x) is :

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

lim_(x rarr0^(-))([x])/(x) (where [.] denotes greatest integer function) is

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)