Home
Class 12
MATHS
Statement 1: lim(xto0)[(sinx)/x]=0 Sta...

Statement 1: `lim_(xto0)[(sinx)/x]=0`
Statement 2: `lim_(xto0)[(sinx)/x]=1`

A

Statement-1 is True, Statement -2 is True, Statement -2 is True and Statement -2 is a correct explanation for statement -1.

B

Statement -1 is True, Statement -2 is True and Statement -2 is Not is a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
c
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto0)|x|^(sinx)

Statement 1: If lim_(xto0){f(x)+(sinx)/x} does not exist then lim_(xto0)f(x) does not exist. Statement 2: lim_(xto0)((e^(1//x)-1)/(e^(1//x)+1)) does not exist.

Consider the following statements: 1. lim_(xto0)sin""(1)/(x) does not exist. 2. lim_(xto0)sin""(1)/(x) exists. Which of the above statements correct?

Evaluate lim_(xto0^(+))(sinx)^(x)

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

lim_(xto0)(sin2x)/(1-sqrt(1-x))

What is the value of lim_(xto0) (sinx)/(x) ?

Evaluate lim_(xto0)(tanx-sinx)/(x^(3)).