Home
Class 12
MATHS
Statement 1: If f(x)=2/(pi) cot^(-1)((3x...

Statement 1: If `f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2)))`, then `lim_(xto1^(-))f(x)=0` and `lim_(xto2^(-))f(x)=2`
Statement 2: `lim_(xtooo)cot^(-1)x=0` and `lim_(xto -oo)cot^(-1)x=pi`

A

Statement-1 is True, Statement -2 is True, Statement -2 is True and Statement -2 is a correct explanation for statement -1.

B

Statement -1 is True, Statement -2 is True and Statement -2 is Not is a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

Find lim_(xto0)(cot^(-1)(1/x))/x

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

lim_(xto oo)(x/(1+x))^(x) is

If f(x)=cos^(-1)(4x^3-3x)and lim_(xto1//2+)f'(x)=a and lim_(xto1//2-)f'(x)=b then a + b+ 3 is equal to

lim_(x=1)[(pi cot pi x)/(x)+(3x^(2)-1)/(x^(2)-x^(4))]

If f(x)={("sin"(pix)/2,, x lt1),(4x-3,,1lexle2),(log2(2x^(2)-4),,2ltxlt3):} then value of lim_(xto1)f(x)+lim_(xto2^(+))f(x) is

If f(x)=1/3(f(x+1)+5/(f(x+2))) and f(x)gt0,AA x epsilonR, then lim_(xto oo)f(x) is