Home
Class 12
MATHS
Statement 1: lim(xto oo)(1/(x^(2))+2/(x^...

Statement 1: `lim_(xto oo)(1/(x^(2))+2/(x^(2))+3/(x^(2))+…………..+x/(x^(2)))=lim_(xto oo)1/(x^(2))+………….+lim_(xto oo)x/(x^(2))=0`
Statement 2: `lim_(xtoa)(f_(1)(x)+f_(2)(x)+………..+f_(n)(x))=lim_(xtoa)f_(1)(x)+………….+lim_(xtoa)f_(n)(x)` provided each limit exists individually.

A

Statement-1 is True, Statement -2 is True, Statement -2 is True and Statement -2 is a correct explanation for statement -1.

B

Statement -1 is True, Statement -2 is True and Statement -2 is Not is a correct explanation for Statement -1.

C

Statement -1 is True, Statement -2 is False.

D

Statement -1 is False, Statement -2 is True.

Text Solution

Verified by Experts

The correct Answer is:
d
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto oo)(x/(1+x))^(x) is

lim_(x rarr oo) (1+f(x))^(1/f(x))

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

lim_(xto oo)(ln(x^(2)+5x)-2ln(cx+1)=-2 then

Statement 1: lim_(xto0)[(sinx)/x]=0 Statement 2: lim_(xto0)[(sinx)/x]=1

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

(lim_(xto oo) ((x+3)/(x+1))^(x+1) is equal to