Home
Class 12
MATHS
Evaluate: lim(xto0)(log(1-3x))/(5^(x)-1)...

Evaluate: `lim_(xto0)(log(1-3x))/(5^(x)-1)`

A

`(-3)/(log5)`

B

`(-1)/(log5)`

C

`3/(log5)`

D

`1/(log5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\log(1 - 3x)}{5^x - 1}, \] we start by substituting \( x = 0 \) into the expression: 1. **Substituting \( x = 0 \)**: \[ \log(1 - 3 \cdot 0) = \log(1) = 0, \] and \[ 5^0 - 1 = 1 - 1 = 0. \] This gives us the indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hôpital's Rule**: Since we have the indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule, which states that if \( \lim_{x \to c} \frac{f(x)}{g(x)} = \frac{0}{0} \) or \( \frac{\pm \infty}{\pm \infty} \), then: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}, \] provided the limit on the right exists. 3. **Finding the derivatives**: - The derivative of the numerator \( f(x) = \log(1 - 3x) \): \[ f'(x) = \frac{1}{1 - 3x} \cdot (-3) = \frac{-3}{1 - 3x}. \] - The derivative of the denominator \( g(x) = 5^x - 1 \): \[ g'(x) = 5^x \ln(5). \] 4. **Applying L'Hôpital's Rule**: Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{\log(1 - 3x)}{5^x - 1} = \lim_{x \to 0} \frac{-3/(1 - 3x)}{5^x \ln(5)}. \] 5. **Substituting \( x = 0 \) again**: Now we substitute \( x = 0 \) into the new limit: \[ = \frac{-3/(1 - 3 \cdot 0)}{5^0 \ln(5)} = \frac{-3/1}{1 \cdot \ln(5)} = \frac{-3}{\ln(5)}. \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{\log(1 - 3x)}{5^x - 1} = \frac{-3}{\ln(5)}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: lim_(xto0)(log(e^(x)-x))/(1-cosx)

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evaluate lim_(xto a)(log{1+(x-a)})/((x-a))

Evaluate lim_(xto0)(log(5+x)-log(5-x))/x

Evaluate lim_(xto0)(sqrt(1+x)-1)/(x)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))