Home
Class 12
MATHS
If x gt0 and g is bounded function then ...

If `x gt0` and g is bounded function then `lim_(xtooo)(f(x)e^(nx)+g(x))/(e^(nx)+1)`

A

`f(x)`

B

`g(x)`

C

`0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xtooo) (log_(e)x)/(x)

Let function f be defined as f:R^(+)toR^(+) and function g is defined as g:R^(+)toR^(+) . Functions f and g are continuous in their domain. Suppose, the function h(x)=lim_(ntooo)(x^(n)f(x)+x^(2))/(x^(n)+g(x)), x gt0 . If h(x) is continuous in its domain,then f(1).g(1) is equal to

Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x)) , where g is a continuous function then lim_(x to 0) f(x) exist if

Using the L .Hospital rule find limits of the following functions : lim_(xtooo) x^(1//In(e^(x)-1)

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

The value of lim_(x rarr oo)(x^(n)+nx^(n-1)+1)/(e^(|x|)),n in1 is

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

Let f and g be differentiable functions such that: xg(f(x))f\'(g(x))g\'(x)=f(g(x))g\'(f(x))f\'(x) AA x in R Also, f(x)gt0 and g(x)gt0 AA x in R int_0^xf(g(t))dt=1-e^(-2x)/2, AA x in R and g(f(0))=1, h(x)=g(f(x))/f(g(x)) AA x in R Now answer the question: f(g(0))+g(f(0))= (A) 1 (B) 2 (C) 3 (D) 4