Home
Class 12
MATHS
lim(xto0)(sin[cosx])/(1+[cosx]), ([.] de...

`lim_(xto0)(sin[cosx])/(1+[cosx])`, ([.] denotes the greatest integer function)

A

equal to 1

B

equal to 0

C

Does not exist

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

("lim")_(x→0^+)("sin"[cosx])/(1-[cosx]) ([.] denotes the greatest integer function) is equal to equal to 1 (b) equal to 0 does not exist (d) none of these

Evaluate: (lim)_(x rarr0)(sin[cos x])/(1+[cos x])([.] denotes the greatest integer function).

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Evaluate: lim_(xto(5pi)/(4)) [sinx+cosx] , [.] denotes the greatest integer function.

lim_(x->0)(sin[sec^2x])/(1+[cosx]), where [*] denotes greatest integral function, is

Solve lim_(xto0)[(sin|x|)/(|x|)] , where [.] denotes greatest integer function.

Solve (i) lim_(xto1) sin x (ii) lim_(xto0^(+))[(sinx)/x] (iii) lim_(xto0^(-))[(sinx)/x] (where [.] denotes greatest integer function)

Prove that [lim_(xto0) (sinx)/(x)]=0, where [.] represents the greatest integer function.

If l=lim_(xto1^(+))2^(-2^(1/(1-x))) and m=lim_(xto1^(+))(x sin (x-[x]))/(x-1) (where [.] denotes greatest integer function). Then (l+m) is ………….