Home
Class 12
MATHS
Let f(x)={(x^2,x notin Z),((k(x^2-4))/(2...

Let` f(x)={(x^2,x notin Z),((k(x^2-4))/(2-x),x notinZ):}`
Then, `lim_(xto2) f(x)`

A

exists only when `k=1`

B

exists for every real k

C

exists for every real k except `k=1`

D

Does not exist

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={(x^2,x in Z),((k(x^2-4))/(2-x),x notinZ):} Then, lim_(xrarr2) f(x)

If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}| , then lim_(xto0)(f(x))/(x^(2))=

Let f :R to [0,oo) be such that lim_(xto3) f(x) exists and lim_(x to 3) ((f(x))^2-4)/sqrt(|x-3|)=0 . Then lim_(x to 3) f(x) equals

Let f(x)=|(cosx,x,1),(2sinx,x^(2),2x),(tan x,x,1)| then lim_(xto0)(f(x))/(x^(2)) is given by

Let f(x) =|{:(secx,x^(2),x),(2sinx,x^(3),2x^(2)),(tan3x,x^(2),x):}|lim_(x to 0)f(x)/(x^(4)) is equal to

Statement 1: If f(x)=2/(pi) cot^(-1)((3x^(2)+1)/((x-1)(x-2))) , then lim_(xto1^(-))f(x)=0 and lim_(xto2^(-))f(x)=2 Statement 2: lim_(xtooo)cot^(-1)x=0 and lim_(xto -oo)cot^(-1)x=pi

If f (x)= |{:(x cos x, 2x sin x, x tan x),(1,x,1),(1,2x,1):}|, find lim _(xto0) (f(x))/(x ^(2)).

Let f(x)={{:(1+(x)/(2k),0ltxlt2),(kx,2lexlt4):} If lim_(xto2)f(x) exists, then what is the value of k?