Home
Class 12
MATHS
If f(x)={((a^(2[x]+{x})-1)","(2[x]+{x}),...

If `f(x)={((a^(2[x]+{x})-1)","(2[x]+{x}),x!=0),(log_(e)a,x=0):}`
Then at x=0, (where [x] and {x} are the greatest integer function and fraction part of x respectively

A

`f(x)` is continuous

B

`f(x)` is discontinuous

C

`lim_(xto0^(+))f(x)=a`

D

`lim_(xto0)f(x)=1/(log_(e)a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation [x]+{-x}=2x, (where [.l and {} represents greatest integer function fractional part function respectively)

In the questions,[x] and {x} represent the greatest integer function and the fractional part function,respectively.Solve: [x]^(2)-5[x]+6=0

Solve : [x]^(2)=x+2{x}, where [.] and {.} denote the greatest integer and the fractional part functions, respectively.

The value of int_(0)^(|x|){x} dx (where [*] and {*} denotes greatest integer and fraction part function respectively) is

If f(x)=[x^(2)]+sqrt({x}^(2)), where [] and {.} denote the greatest integer and fractional part functions respectively,then

If f(x)={{:((e^([2x]+2x+1)-1)/([2x]+2x+1),:,x ne 0),(1,":", x =0):} , then (where [.] represents the greatest integer function)

The range of function f(x)=log_(x)([x]), where [.] and {.} denotes greatest integer and fractional part function respectively

If int_(0)^(x)[x]dx=int_(0)^(|x|)x dx, (where [.] and {.} denotes the greatest integer and fractional part respectively), then

Let f(x) = log _({x}) [x] g (x) =log _({x})-{x} h (x) log _({x}) {x} where [], {} denotes the greatest integer function and fractional part function respectively. Domine of h (x) is :