Home
Class 12
MATHS
f(x)=[tan^(-1)x] where [.] denotes the g...

`f(x)=[tan^(-1)x]` where [.] denotes the greatest integer function, is discontinous at

A

`x=(pi)/4,(pi)/4` and 0

B

`x=(pi)/3,-(pi)/3` and 0

C

`x=tan1, -tan1, -1tan1 and 0`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine where the function \( f(x) = [\tan^{-1} x] \) is discontinuous, we will analyze the behavior of the function and the greatest integer function (also known as the floor function). ### Step-by-Step Solution: 1. **Understanding the Function**: The function \( f(x) = [\tan^{-1} x] \) applies the greatest integer function to the inverse tangent function. The range of \( \tan^{-1} x \) is \( \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \), which approximately translates to \( (-1.57, 1.57) \). 2. **Identifying the Range of \( f(x) \)**: The values of \( \tan^{-1} x \) will be between \( -1.57 \) and \( 1.57 \). Therefore, the possible integer values (outputs of the greatest integer function) will be \( -2, -1, 0, \) and \( 1 \). 3. **Finding Points of Discontinuity**: The greatest integer function \( [y] \) is discontinuous at integer values of \( y \). Thus, we need to find when \( \tan^{-1} x \) equals these integers: - \( \tan^{-1} x = 0 \) - \( \tan^{-1} x = 1 \) - \( \tan^{-1} x = -1 \) - \( \tan^{-1} x = -2 \) (not applicable since \( \tan^{-1} x \) does not reach -2) 4. **Calculating the Values of \( x \)**: - For \( \tan^{-1} x = 0 \): \[ x = \tan(0) = 0 \] - For \( \tan^{-1} x = 1 \): \[ x = \tan(1) \approx 1.5574 \] - For \( \tan^{-1} x = -1 \): \[ x = \tan(-1) \approx -1.5574 \] 5. **Identifying Discontinuity Points**: The function \( f(x) \) will be discontinuous at: - \( x = 0 \) - \( x \approx 1.5574 \) - \( x \approx -1.5574 \) ### Conclusion: The function \( f(x) = [\tan^{-1} x] \) is discontinuous at \( x = 0, \, x \approx 1.5574, \, x \approx -1.5574 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

The function f(x)=[x], where [x] denotes the greatest integer function,is continuous at

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Equation [cot^(-1) x] + 2 [tan^(-1) x] = 0 , where [.] denotes the greatest integer function, is satisfied by

If f(x)=[tan^(2)x] then (where [ast] denotes the greatest integer function)

If the period of the function f(x)=tan(sqrt([k]x)), where [.] denotes the greatest integer function is pi, then

If [sin^(-1)(cos^(-1)(sin^(-1)(tan^(-1)x)))]=1 where [*] denotes the greatest integer function,then x in

Let f(x)=[|x|] where [.] denotes the greatest integer function, then f'(-1) is

Domain (D) and range (R) of f(x)=sin^(-1)(cos^(-1)[x]), where [.] denotes the greatest integer function,is

The function f(x)=[x^(2)]+[-x]^(2) , where [.] denotes the greatest integer function, is