Home
Class 12
MATHS
The jump value of the function at the po...

The jump value of the function at the point of the discontinuity of the function `f(x)=(1-k^(1//x))/(1+k^(1//x))(kgt0)` is

A

4

B

2

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the jump value of the function \( f(x) = \frac{1 - k^{1/x}}{1 + k^{1/x}} \) at the point of discontinuity, we will calculate the left-hand limit and the right-hand limit as \( x \) approaches 0. ### Step 1: Define the limits We need to find: - Left-hand limit as \( x \to 0^- \) - Right-hand limit as \( x \to 0^+ \) ### Step 2: Calculate the left-hand limit For the left-hand limit, we evaluate: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{1 - k^{1/x}}{1 + k^{1/x}} \] As \( x \to 0^- \), \( \frac{1}{x} \to -\infty \) which implies \( k^{1/x} \to 0 \) (since \( k > 0 \)). Therefore, we have: \[ \lim_{x \to 0^-} f(x) = \frac{1 - 0}{1 + 0} = 1 \] ### Step 3: Calculate the right-hand limit For the right-hand limit, we evaluate: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1 - k^{1/x}}{1 + k^{1/x}} \] As \( x \to 0^+ \), \( \frac{1}{x} \to +\infty \) which implies \( k^{1/x} \to +\infty \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0^+} f(x) = \frac{1 - \infty}{1 + \infty} = \frac{-\infty}{\infty} \] To simplify this, we can factor out \( k^{1/x} \): \[ = \lim_{x \to 0^+} \frac{-k^{1/x}(1 - \frac{1}{k^{1/x}})}{k^{1/x}(1 + \frac{1}{k^{1/x}})} = \lim_{x \to 0^+} \frac{-1 + 0}{1 + 0} = -1 \] ### Step 4: Calculate the jump value The jump value is given by: \[ \text{Jump value} = \text{Left-hand limit} - \text{Right-hand limit} = 1 - (-1) = 1 + 1 = 2 \] ### Final Answer Thus, the jump value of the function at the point of discontinuity is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The jump value of the function at the point of the discontinuity of the function f(x)=(1-k^(1/x))/(1+k^(1/x))(k>0) (k=1) is: (A) 4 (B) 2 (C) 3 (D) None of these

the point of discontinuity of the function f(x)=(1+cos5x)/(1-cos4x) is

Find the points of discontinuity of the function: f(x)=(1)/(2sin x-1)

Find the points of discontinuity of the function: f(x)=(1)/(1-e^((x-1)/(x-2)))

Find the points of discontinuity of the function: f(x)=(1)/(x^(4)+x^(2)+1)

The set of points of discontinuity of the function f(x)=(1)/(log|x|),is

Find the points of discontinuity of the following function f(x)=1/(2 x-1)

Given the function f(x)=(1)/(x+2). Find the points of discontinuity of the function f(f(x))

Given f(x)=(1)/(x-1) .Find the points of discontinuity of the composite function f(f(x)).

Given f(x)=(1)/(x-1) .Find the points of discontinuity of the composite function f(f(x)).