Home
Class 12
MATHS
If lim(xtoa^(+))f(x)=l=lim(xtoa^(-))g(x)...

If `lim_(xtoa^(+))f(x)=l=lim_(xtoa^(-))g(x)` and `lim_(xtoa^(-))f(x)=m=lim_(xtoa^(+))g(x)`, the function `f(x).g(x)` is

A

is not continuous at `x=a`

B

has a limit when `xtoa` and equal to `lm`

C

is continuous at x=a

D

has a limit when `xtoa` and is not equal to `lm`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

Consider the following statements : 1. If lim_(xtoa) f(x) and lim_(xtoa) g(x) both exist, then lim_(xtoa) {f(x)g(x)} exists. 2. If lim_(xtoa) {f(x)g(x)} exists, then both lim_(xtoa) f(x) and lim_(xtoa) g(x) must exist. Which of the above statements is /are correct?

lim_(x rarr a)[f(x)+g(x)]=2 and lim_(x rarr a)[f(x)-g(x)]=1 then lim_(x rarr a)f(x)g(x)

lim_(x rarr5)f(x)=2 and lim_(x rarr5)g(x)=0, then lim_(x rarr5)(f(x))/(g(x)) does not exist.

If lim_(x rarr2)f(f(x)+g(x))=2 and lim_(x rarr2)(f(x)-g(x))=1 then lim_(x rarr2)f(x)*g(x) need not exist.