Home
Class 12
MATHS
The value of f(0), so that the function ...

The value of `f(0),` so that the function `f(x)=(sqrt(a^2-a x+x^2)-sqrt(a^2+a x+x^2))/(sqrt(a+x)-sqrt(a-x))` becomes continuous for all `x ,` given by `a^(3/2)` (b) `a^(1/2)` (c) `-a^(1/2)` (d) `-a^(3/2)`

A

`asqrt(a)`

B

`-sqrt(a)`

C

`sqrt(a)`

D

`-asqrt(a)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of f(0) , so that the function f(x) = (sqrt(a^(2)-ax+x^(3))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) become continuous for all x, is given by

The value of f(0), so that the function f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) becomes continuous for all x, given by a^((3)/(2))( b) a^((1)/(2))(c)-a^((1)/(2))(d)-a^((3)/(2))

If f(x)=(sqrt(a^(2)-ax+x^(2))-sqrt(a^(2)+ax+x^(2)))/(sqrt(a+x)-sqrt(a-x)) is continuous at x=0 then f(0)

The function f(x)=sqrt(1+x+x^(2))-sqrt(1-x+x^(2)) is

Domain of function f(x)=sqrt(x-sqrt(1-x^(2)))

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is

The function f (x) =1+ x ln (x+ sqrt(1+ x ^(2)))-sqrt(1- x^(2)) is:

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)