Home
Class 12
MATHS
Prove that the function If f(x)={:{((x)/...

Prove that the function If `f(x)={:{((x)/(1+e^(1//x)) ", " x ne 0),(" "0", " x=0):}` is not differentiable

A

Differentiable

B

Non-differentiable

C

L.H.L at x-0 is 1

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

If f(x)={((1+2x)^(1//x)",","for " x ne 0),(e^(2)",", "for " x =0):} , then

Show that the function defined by f(x) = {{:(x^(2) sin 1//x",",x ne 0),(0",",x = 0):} is differentiable for every value of x, but the derivative is not continuous for x =