Home
Class 12
MATHS
f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxl...

`f(x)={(|2x-3|[x],0lexle2),(x^(2)/2,2ltxle3):}`. If f(x) is defined in (0,3) then ([.] denotes greatest integer function)

A

Point of discontiuity at `x=1, 1/2,2`

B

Point of discontinuity at x=1 and 2

C

Point of non-differentiability at `x=1, 1/2,2`

D

Point of non-differentiability at `x=1, 3/2, 2`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

If f(x)=[2x], where [.] denotes the greatest integer function,then

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

If f(x)=[x]+[x+(1)/(3)]+[x+(2)/(3)] then (I.l.denotes the greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

If f:(3,4)rarr(0,1) defined by f(x)=x-[x] where [x] denotes the greatest integer function then f(x) is

Let f:R rarr A defined by f(x)=[x-2]+[4-x], (where [] denotes the greatest integer function).Then

f(x)=[(x^(3)+4x)/(2)] is discontinuous at x equal to (where [.] denotes the greatest integer function)

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then