Home
Class 12
MATHS
If the function and the derivative of th...

If the function and the derivative of the function `f(x)` is everywhere continuous and is given by
`f(x)={:{(bx^(2)+ax+4", for " x ge -1),(ax^(2)+b", for " x lt -1):}`, then

A

`a=2,b=3`

B

`a=1,b=1`

C

`a=-2,b=-3`

D

`a=-3,b=-2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) continuous on its domain, where f(x)={:{(6", for " x le 2), (ax+b", for " 2 lt x lt 10),(22", for " x ge 10):} , then

If f(x) is continuous at x=2 and x=10 , where f(x)={:{(5", if " x le 2),(ax+b", if " 2 lt x lt 10),(21", if " x ge 10):} , then

The function f(x)= {(2 ax ", " x ge 3 ),( 3x +1 ", " x gt 3):} continuous at x= 3, then a =?

Let f(x) = {{:( x, if , x ge 1),( x^(2), if , x lt 1):} is f a continuous function ? Why ?

If f(x)=ax^(2)+bx+c, f(-1) gt (1)/(2), f(1) lt -1 and f(-3)lt -(1)/(2) , then

Let f(x)= {:{ (x + a , x ge 1 ) , ( ax^(2) + 1, x lt 1) :} then f(x) is derivable at x =1 , if

If the derivative of the function f(x)={{:(ax^(2)+b,xlt-1),(bx^(2)+ax+4,xge-1):} is every where continuous, then what are the values of a and b?

If the function f(x)={{:(k +x, "for " x lt1),(4x+3, "for " x ge1):} is continuous at x=1 then k=