Home
Class 12
MATHS
5.f(x)=[sinx]+[cos] ,x epsilon [0,2pi], ...

5.f(x)=[sinx]+[cos] ,`x epsilon [0,2pi]`, where[.] denotes the greatest integer function. Total number of point where f (x) is non-differentiable is equal to (A) 2 (B) 3 (C) 5 (D) 4

A

2

B

3

C

5

D

4

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[sin x]+[cos x],x in[0,2 pi], where [.] denotes the greatest integer function.Then, the total number of points,where f(x) is non- differentiable,is (A)2(B)3(C)5(D)4

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x) =[x]+|1-x|,-1lex< 3 ,(here [.] denotes greatest integer function). The number of points, where f(x) is non-differentiable is

f(x)=2^(cos^(4)pi x+x-[x]+cos^(2)pi x), where [.] denotes the greatest integer function.

f(x)=1+[cos x]x in 0<=x<=(pi)/(2) (where [.] denotes greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

Let f(x)=[x]cos ((pi)/([x+2])) where [ ] denotes the greatest integer function. Then, the domain of f is

If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)