Home
Class 12
MATHS
If f(x)=max{2sinx ,1-cosx}AAx in (0, 2pi...

If `f(x)=max{2sinx ,1-cosx}AAx in (0, 2pi),` then f'(x) is not defind at:

A

`x=(5pi)/12`

B

`x=x_(0),` where `2 sin x_(0)+cos x_(0)=1`

C

`x=(pi)/2`

D

`x=(pi)/2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If (x)=max{2sin x,1-cos x}AA x in(0,2 pi) then f(x) is not defind at:

If f(x)=2sinx-x^(2) , then in x in [0, pi]

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{(1)/(2),sinx} , then f(x)=(1)/(2) is defined when x in

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=max{x^(2),2^(x)} ,then if x in (0,1) , f(x)=

Sometimes functions are defined like f(x)=max{sinx,cosx} , then f(x) is splitted like f(x)={{:(cosx, x in (0,(pi)/(4)]),(sinx, x in ((pi)/(4),(pi)/(2)]):} etc. If f(x)=min{tanx, cotx} then f(x)=1 when x=

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

Consider the function f(x)=max{|sinx|,|cosx|},AA"x"in[0,3pi]. if lamda is the number of points at which f(x) is non - differentiable , then value of (lamda^3)/5 is

If f'(x)=x|sinx|AAx""in(0,x)andf(0)=(1)/(sqrt3), then f(x) will be

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

If f(x)=cosx+sinx and g(x)=x^(2)-1 , then g(f(x)) is injective in the interval