Home
Class 12
MATHS
Solve : log4(log3(log2x))=0...

Solve : `log_4(log_3(log_2x))=0`

A

`2^(3^(4))`

B

`9`

C

`24`

D

`4^(3^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve :log_(4)(log_(3)(log_(2)x))=0

If log_2 (log_3 (log_4 x))= 0, log_4 (log_3 (log_2 y))= 0 and log_3(log_4 (log_2z ))= 0, then the correct option is

Solve: log_(9)x+log_(x)9+log_(x)x+log_(9)9=0

Solve :6(log_(x)2-log_(4)x)+7=0

Solve the following equations. (iv) log_4log_3log_2x=0

Solve for x: log_(4) log_(3) log_(2) x = 0 .

solve for x if log_(4)log_(3)log_(2)x=0 and log_(e)log_(5)(sqrt(2x+2)-3)=0

If log_2(log_3(log_4(x)))=0, log_3(log_4(log_2(y)))=0 and log_4(log_2(log_3(z)))=0 then the sum of x,y,z is

Solve : log_(3)x . log_(4)x.log_(5)x=log_(3)x.log_(4)x+log_(4)x.log_(5)+log_(5)x.log_(3)x .

If log_(2)(log_(3)(log_(4)(x)))=0 and log_(3)(log_(4)(log_(2)(y)))=0 and log_(4)(log_(2)(log_(2)(z)))=0 then the sum of x,y and z is _(-)