Home
Class 12
MATHS
If x-sin theta and y=cos^(3) then 2y(d^(...

If `x-sin theta` and `y=cos^(3)` then `2y(d^(2)y)/(dx^(2))+4((dy)/(dx))^(2)` is

A

`6 cos^(2)theta(7 sin^(2)theta-cos^(2)theta)`

B

`cos^(2) theta(13 sin^(2) theta-cos^(2) theta)`

C

`3 cos^(2) theta(cos^(2) theta-13 sin^(2) theta)`

D

`3 cos^(2) theta(17 sin^(2) theta+cos^(2) theta)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = cos theta and y = sin^(3) theta, then |(yd ^(2)y)/(dx ^(2))+((dy)/(dx))^(2)|at theta=(pi)/(2) is:

If x=cos theta,y=s in^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3s in^(2)theta(5cos^(2)theta-1)

If x =theta -sin theta ,y=1-cos theta,then (d^(2)y)/(dx^(2))=

If x=cos theta,y sin^(3)theta, prove that y(d^(2)y)/(dx^(2))+((dy)/(dx))^(2)=3sin^(2)theta(5cos^(2)theta-1)

If y=cos(log x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y is equal to

If x=a(theta-sin theta),y=a(1+cos theta) find (d^(2)y)/(dx^(2))

If y=cos (log x) ,then " "x^(2) (d^(2)y)/(dx^(2))+x(dy)/(dx)=

If x=cos theta,y=sin5 theta then (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=

If y=(cos x-sin x)/(cos x+sin x) then ((d^(2)y)/(dx^(2)))/((dy)/(dx))=

If x = sin theta, y = sin^(3) theta then (d^(2)y)/(dx^(2)) at theta = (pi)/(2) is …….