Home
Class 12
MATHS
If x=e^(-t^(2)), y=tan^(-1)(2t+1), then ...

If `x=e^(-t^(2)), y=tan^(-1)(2t+1)`, then `(dy)/(dx)=`

A

`(e^(-t^(2)))/(2t(2t^(2)-2t+1))`

B

`(-e^(t^(2)))/(2t(2t^(2)+2t+1))`

C

`(-e^(t^(2)))/(2t(2t^(2)+2t+1))`

D

`(-e^(t^(2)))/(t(2t^(2)+2t+1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=e^(sin^(-1)t^(t)),y=tan^(-1)t, then (dy)/(dx)

If x=t^(2)+(1)/(t^(2)),y=t-(1)/(t)," then "(dy)/(dx)=

If x=log(1+t^(2)),y=t-tan^(-1)t , show that (dy)/(dx)=sqrt(e^(x)-1)/(2)

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x=a(t+t^(-1)),y=a(t-t^(-1))," then "(dy)/(dx)=

If x=(t+1)/(t),y=(t-1)/(t)," then "(dy)/(dx)=

If x=(t+(1)/(t)),y=(t-(1)/(t)) , then (dy)/(dx)=?

If x=(e^(t)+e^(-t))/(2),y=(e^(t)-e^(-t))/(2)," then: "(dy)/(dx)=