Home
Class 12
MATHS
If x^y y^x=1 , prove that (dy)/(dx)=-(y...

If `x^y y^x=1` , prove that `(dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))`

A

`(y(y+x logy))/(x(y logx +x))`

B

`(y(x+y log x))/(x(y log x +y))`

C

`(y(y+x log y))/(x (x+y log x))`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))

If xy log(x+y)=1, prove that (dy)/(dx)=-(y(x^(2)y+x+y))/(x(xy^(2)+x+y))=

If xy=e^(x-y) , prove that (dy)/(dx)=(y(x-1))/(x(y+1)) .

If x^(x)+y^(x)=1, prove that (dy)/(dx)=-{(x^(x)(1+log x)+y^(x)log y)/(xy^((x-1)))}

If y,=x sin y, prove that (dy)/(dx),=(y)/(x(1-x cos y))