Home
Class 12
MATHS
Ifa alpha and beta be the roots of ax^2...

Ifa `alpha and beta` be the roots of `ax^2 + bx + c = 0`, then `lim_(x->alpha) (1+ax^2 + bx +c)^(1/(x-alpha))` is equal to

A

`a (alpha-beta)`

B

`In |a(alpha-beta)|`

C

`e^((alpha-beta))`

D

`e^(a(alpha-beta))`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Ifa alpha and beta be the roots of ax^(2)+bx+c=0, then lim_(x rarr alpha)(1+ax^(2)+bx+c)^((1)/(x-a)) is equal to

If alpha,beta are the roots of the equation ax^2+bx+c=0 , then lim_(xrarralpha)(ax^2+bx+c+1)^(1//x-alpha) is equal to

If alpha and beta are roots of the equation ax^2+bx +c=0 , then lim_(xrarralpha) (1+ax^2+bx+c)^(1//x-alpha) , is

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

If alpha an beta are roots of ax^(2)+bx+c=0 the value for lim_(xto alpha)(1+ax^(2)+bx+c)^(2//x-alpha) is

If alpha and beta be the roots of ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))lim is

If alpha is a repeated root of ax^2+bx +c=0 , then lim_(xrarralpha)(sin(ax^2+bc+c))/(x-alpha)^2 is equal to

If alpha , beta are the roots of ax^(2) + bx +c=0 , then (alpha^(3) + beta^(3))/(alpha^(-3) + beta^(-3)) is equal to :

If alpha and beta are the roots of equation ax^2 + bx + c = 0, then the value of alpha/beta + beta/alpha is