Home
Class 12
MATHS
lim(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([...

`lim_(xto0)(tan([-pi^(2)]x^(2))-x^(2)tan([-pi^(2)]))/(sin^(2)x)` equals (where [.] denotes the greater ineteger function)

A

0

B

1

C

`tan 10 -10`

D

`oo`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)[(-2x)/(tanx)] , where [.] denotes greatest integer function is

lim_(x rarr0)[(99tan x sin x)/(x^(2))] = Where [.] denotes the greatest integer function

The value of lim_(xto0)(sin[x])/([x]) (where [.] denotes the greatest integer function) is

Solve lim_(xto0)["sin"(|x|)/x] , where e[.] denotes greatest integer function.

Solve lim_(xto0)[(sin|x|)/(|x|)] , where [.] denotes greatest integer function.

lim_(xto0) [(sin(sgn(x)))/((sgn(x)))], where [.] denotes the greatest integer function, is equal to

lim_(xto(pi)/(2)) ([(x)/(2)])/(log_(e)(sinx))([.] denotes greatest integer function)

The function f(x)=(tan{pi[x-(pi)/(2)]})/(2+[x]^(2)) , where [x] denotes the greatest integer el x , is

lim_(x rarr0)(tan( [pi]^(2)x^(2))-{tan( [-pi^(2)])}x^(2))/(sin^(2)x) where [.] is G. 1. F. (a) 1 (b) 2 (c) 3 (d) None