Home
Class 12
MATHS
lim(x to oo)(sin^(4)x-sin^(2)x+1)/(cos^(...

`lim_(x to oo)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1)` is equal to

A

0

B

1

C

`1//3`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\cos^4 x - \cos^2 x + 1}, \] we can follow these steps: ### Step 1: Rewrite the limit expression We start by rewriting the limit expression to make it easier to analyze: \[ \lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\cos^4 x - \cos^2 x + 1}. \] ### Step 2: Substitute trigonometric identities Recall that \( \sin^2 x + \cos^2 x = 1 \). We can express \( \cos^2 x \) in terms of \( \sin^2 x \): \[ \cos^2 x = 1 - \sin^2 x. \] Now, we can rewrite the denominator: \[ \cos^4 x = (1 - \sin^2 x)^2 = 1 - 2\sin^2 x + \sin^4 x. \] Substituting this into the limit gives: \[ \lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{(1 - 2\sin^2 x + \sin^4 x) - (1 - \sin^2 x) + 1}. \] ### Step 3: Simplify the denominator Now simplify the denominator: \[ \cos^4 x - \cos^2 x + 1 = (1 - 2\sin^2 x + \sin^4 x) - (1 - \sin^2 x) + 1. \] This simplifies to: \[ -2\sin^2 x + \sin^4 x + \sin^2 x + 1 = \sin^4 x - \sin^2 x + 1. \] ### Step 4: Substitute back into the limit Now we have: \[ \lim_{x \to \infty} \frac{\sin^4 x - \sin^2 x + 1}{\sin^4 x - \sin^2 x + 1}. \] ### Step 5: Evaluate the limit Since the numerator and denominator are the same, we can simplify this to: \[ \lim_{x \to \infty} 1 = 1. \] ### Final Answer Thus, the limit is: \[ \boxed{1}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(lim)_(x rarr)(sin^(4)x-sin^(2)x+1)/(cos^(4)x-cos^(2)x+1) is equal to (a) 0( b) 1 (c) (1)/(3)(d)(1)/(2)

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

" (2) "sin^(-1)x+sin^(-1)(1/x)+cos^(-1)x+cos^(-1)(1/x)" is equal to "

Evaluate: lim_(xto oo)(2x^(2)-2x-sin^(2)x)/(3x^(2)-4x+cos^(2)x)

Evaluate: int(1)/(sin^(4)x+sin^(2)x cos^(2)x+cos^(4)x)dx

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(x rarr-oo)(x^(2)*sin((1)/(x)))/(sqrt(9x^(2)+x+1)) is equal to

If 2sin x-cos2x=1 ,then (cos^(2)x+cos^(4)x+4)/(2) is equal to