Home
Class 12
MATHS
lim(x->0) (e^x +e^-x +2 cos x -4)/x^4 is...

`lim_(x->0) (e^x +e^-x +2 cos x -4)/x^4` is equal to

A

0

B

1

C

`1/6`

D

`-1/6`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(e^(x)+e^(-x)+2cos x-4)/(x^(4)) is equal to

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(x rarr0)(e^(x^(2))-cos x)/(sin^(2)x) is equal to

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)

the value of lim_(x rarr0)(cos(sin x)-cos x)/(x^(4)) is equal to:

lim_(x rarr0)(e^(x)+e^(-x)-2cos x)/(x sin x)=