Home
Class 12
MATHS
The value of lim(x to oo)((1+3x)/(2+3x))...

The value of `lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x))` is

A

0

B

`-1`

C

`e`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{1 + 3x}{2 + 3x} \right)^{\frac{1 - \sqrt{x}}{1 - x}} \), we will break it down into manageable parts. ### Step 1: Evaluate the limit of the base First, we will evaluate the limit of the base \( \frac{1 + 3x}{2 + 3x} \) as \( x \to \infty \). \[ \lim_{x \to \infty} \frac{1 + 3x}{2 + 3x} \] This is an indeterminate form \( \frac{\infty}{\infty} \). To simplify, we can divide the numerator and the denominator by \( x \): \[ = \lim_{x \to \infty} \frac{\frac{1}{x} + 3}{\frac{2}{x} + 3} \] As \( x \to \infty \), \( \frac{1}{x} \to 0 \) and \( \frac{2}{x} \to 0 \): \[ = \frac{0 + 3}{0 + 3} = 1 \] ### Step 2: Evaluate the limit of the exponent Next, we will evaluate the limit of the exponent \( \frac{1 - \sqrt{x}}{1 - x} \) as \( x \to \infty \). \[ \lim_{x \to \infty} \frac{1 - \sqrt{x}}{1 - x} \] This is also an indeterminate form \( \frac{-\infty}{-\infty} \). We can simplify it by multiplying the numerator and denominator by \( -1 \): \[ = \lim_{x \to \infty} \frac{\sqrt{x} - 1}{x - 1} \] Now, we can divide the numerator and denominator by \( x \): \[ = \lim_{x \to \infty} \frac{\frac{\sqrt{x}}{x} - \frac{1}{x}}{1 - \frac{1}{x}} = \lim_{x \to \infty} \frac{\frac{1}{\sqrt{x}} - 0}{1 - 0} \] As \( x \to \infty \), \( \frac{1}{\sqrt{x}} \to 0 \): \[ = 0 \] ### Step 3: Combine the results Now we combine the results from Steps 1 and 2: \[ \lim_{x \to \infty} \left( \frac{1 + 3x}{2 + 3x} \right)^{\frac{1 - \sqrt{x}}{1 - x}} = 1^0 \] Since any number raised to the power of 0 is 1, we conclude: \[ \lim_{x \to \infty} \left( \frac{1 + 3x}{2 + 3x} \right)^{\frac{1 - \sqrt{x}}{1 - x}} = 1 \] ### Final Answer Thus, the value of the limit is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (sqrt(x^2+1)-sqrt(x^2-1)) is

lim_(x rarr oo)(2x+1)/(3x-2)

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

Find the limits : underset(x to oo)lim ((1+x)/(2+x))^((1-sqrtx)//(1-x)) (b) underset(x to oo)lim ((x^(2)+2x-1)/(2x^(2)-3x-2))^((2x+1)//(x-1))

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1) equal to

The value of lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-x+1)) equals

lim _(x to oo) (1-4/(x-1))^(3x-1) =