Home
Class 12
MATHS
underset(n to oo)"lim"(n^(p) sin^(2)(n!)...

`underset(n to oo)"lim"(n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1`, is equal to-

A

1

B

`oo`

C

`0`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) (n^(p) sin^(2)(n!))/(n +1) , 0 lt p lt 1 , is equal to-

lim_(xrarr oo) (n^p sin^2(n!))/(n+1),0ltplt1 , is equal to

underset(n to oo)lim ((n^(2)-n+1)/(n^(2)-n-1))^(n(n-1))

lim_ (n rarr oo) (n ^ (alpha) sin ^ (2) n!) / (n + 1), 0

Evaluate lim_(ntooo) (n^(p)sin^(2)(n!))/(n+1),"wher "0ltplt1.

Evaluate: lim_(n rarr oo)(n^(p)sin^(2)(n!))/(n+1)

underset(n to oo)lim {1/(1-n^(2))+(2)/(1-n^(2))+....+(n)/(1-n^(2))} is equal to

Find underset(n to oo)lim ((2n^(3))/(2n^(2)+3)+(1-5n^(2))/(5n+1))

lim_(xrarr oo) (a^n_b^n)/(a^n-b^n) , where 1lt b lt a , is equal to