Home
Class 12
MATHS
lim(x->0) ((1+x)^(1/x)-e)/x is equal to...

`lim_(x->0) ((1+x)^(1/x)-e)/x` is equal to

A

e/2

B

e

C

#REF!

D

#REF!

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

lim_(x rarr0)((1+x)^((1)/(x))-e)/(x) is equal to

lim_(x->0)(e^(2x)-1)/(3x)

Slove lim_(xto0)((1+x)^(1//x)-e)/x

lim_(x rarr0)((1+x)^((1)/(x))-e)/(x) equals

The value of lim_(xrarr0) ((1+x)^(1//x)-e)/(x) is

Evaluate lim_(xto0) (x(e^(x)-1))/(1-cosx) is equal to

lim_(xto0)(log_e(1+x))/(3^x-1) is equal to

The value of lim_(xrarr0) (log_e(1+x)-x)/(x{(1+x)^(1//x)-e}) equal to