Home
Class 12
MATHS
lim(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) i...

`lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx))` is equal to

A

`sqrt(2)`

B

`e`

C

`1/(sqrt(e))`

D

`1/e`

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{\sin x}}, \] we can start by letting \[ y = \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{\sin x}}. \] Taking the natural logarithm of both sides gives: \[ \log y = \frac{1}{\sin x} \left( \log((1+x)^{\frac{1}{x}}) - \log e \right). \] Since \(\log e = 1\), we can simplify this to: \[ \log y = \frac{1}{\sin x} \left( \frac{1}{x} \log(1+x) - 1 \right). \] Now, we need to evaluate the limit: \[ \lim_{x \to 0} \log y = \lim_{x \to 0} \frac{1}{\sin x} \left( \frac{1}{x} \log(1+x) - 1 \right). \] As \(x \to 0\), both \(\frac{1}{x} \log(1+x)\) and \(1\) approach \(0\), thus we have the indeterminate form \(0/0\). We can apply L'Hôpital's rule here. First, we rewrite the limit as: \[ \lim_{x \to 0} \frac{\frac{1}{x} \log(1+x) - 1}{\sin x}. \] Differentiating the numerator and denominator: 1. **Numerator**: - The derivative of \(\frac{1}{x} \log(1+x)\) using the product rule: \[ \frac{d}{dx} \left( \frac{1}{x} \log(1+x) \right) = -\frac{1}{x^2} \log(1+x) + \frac{1}{x(1+x)}. \] - The derivative of \(1\) is \(0\). 2. **Denominator**: - The derivative of \(\sin x\) is \(\cos x\). Thus, applying L'Hôpital's rule gives: \[ \lim_{x \to 0} \frac{-\frac{1}{x^2} \log(1+x) + \frac{1}{x(1+x)}}{\cos x}. \] Evaluating this limit as \(x \to 0\): - The term \(\log(1+x) \to 0\) as \(x \to 0\), thus \(-\frac{1}{x^2} \log(1+x) \to 0\). - The term \(\frac{1}{x(1+x)} \to \frac{1}{0} \to \infty\). This means we need to apply L'Hôpital's rule again since we still have an indeterminate form. Differentiating again: 1. **Numerator**: - The derivative of \(-\frac{1}{x^2} \log(1+x)\) is: \[ \frac{2}{x^3} \log(1+x) - \frac{1}{x^2(1+x)}. \] - The derivative of \(\frac{1}{x(1+x)}\) is: \[ -\frac{1}{x^2(1+x)} + \frac{1}{x(1+x)^2}. \] 2. **Denominator**: - The derivative of \(\cos x\) is \(-\sin x\). After applying L'Hôpital's rule again and simplifying, we eventually find that the limit converges to \(-\frac{1}{2}\). Thus, we have: \[ \log y = -\frac{1}{2}. \] Exponentiating both sides gives: \[ y = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}}. \] Finally, the limit is: \[ \lim_{x \to 0} \left( \frac{(1+x)^{\frac{1}{x}}}{e} \right)^{\frac{1}{\sin x}} = \frac{1}{\sqrt{e}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

Slove lim_(xto0)((1+x)^(1//x)-e)/x

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x) is equal to

lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx) is equal to

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

lim_(xto0)(sin^(-1)x-tan^(-1)x)/(x^(3)) is equal to

lim_(xto0)((1-cosx)(3+cosx))/(x tan 4x) is equal to