Home
Class 12
MATHS
lim(x->-oo)(x^2tan(1/(pix^2))+3|x^2|+7)/...

`lim_(x->-oo)(x^2tan(1/(pix^2))+3|x^2|+7)/(|x^3|+7|x|+8)` is equal to: a. `-1/pi` b. 0 c. `oo` d. Does not exist

A

`(-1)/(pi)`

B

`0`

C

`oo`

D

Does not exist

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr-oo)(x^(2)tan((1)/(pi x^(2)))+3|x^(2)|+7)/(|x^(3)|+7|x|+8) is equal to: a*-(1)/(pi) b.0 c.oo d.Does not exist

(lim)_(x->oo)((2tan^(-1)x)/pi)^x

If the value of lim_(x->-oo)[x^5tan(1/[pix^2])+3x^2+7]/[|x|^3+7|x|+8] is equal to -K/ pi ,then K=

lim_(x rarr-oo)(x^(2)*tan((1)/(x)))/(sqrt(8x^(2)+7x+1)) is

lim_(xrarr oo) ((3x^2+2x+1)/(x^2+x+2))^((6x+1)/(3x+1)) , is equal to

lim_(x rarr oo)tan^(-1)(x^(2)-x^(4))

lim_(x rarr oo)(2x+1)/(3x-2)

The value of lim_(xrarr-oo)(x^(2)tan((1)/(x)))/(sqrt(4x^(2)-x+1)) is equal to

(lim)_(x rarr oo)(sin x)/(x) equals a.1b*0c.oo d . does not exist

The value of lim_(xrarr-oo)(x^(2)tan((2)/(x)))/(sqrt(16x^(2)-x+1)) is equal to