Home
Class 12
MATHS
f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 ...

`f(x) = 3x^10 – 7x^8+ 5x^6 -21x^3 + 3x^2 –7`, then is the value of `lim_(h->0) (f(1-h)-f(1))/(h^3+3h)` is

A

`50//3`

B

`22//3`

C

`13`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=3x^(10)7x^(8)+5x^(6)-21x^(3)+3x^(2)7, then is the value of lim_(h rarr0)(f(1-h)-f(1))/(h^(3)+3h) is

the value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

If f(x) = x+3x^2+5x^4+7x^8+... to n terms then find the value of f'(1) .

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

If the normal to differentiable curve y = f(x) at x = 0 be given by the equation 3x-y + 3 = 0 , then the value of lim_(x->0) x^2(f(x^2)-5f(4x^2)+ 4f(7x^2)) is