Home
Class 12
MATHS
The value of lim(x->oo)x[tan^(- 1)((x+1...

The value of `lim_(x->oo)x[tan^(- 1)((x+1)/(x+2))-tan^(- 1)(x/(x+2))]` is

A

1

B

-1

C

`1/2`

D

`-1/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x rarr oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2))]

Evaluate: lim_(n rarr oo)x[tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2))]

lim_(x rarr0)x((tan^(-1)((x+1)/(x+2))-tan^(-1)((x)/(x+2)))=

The value of lim_(x rarr oo)(x+2)tan^(-1)(x+2)-(x tan^(-1)x) is

The value of lim_(xto oo)(x+2)tan^(-1)(x+2)-(xtan^(-1)x) is

(lim)_(x->oo)((2tan^(-1)x)/pi)^x

The value of [lim_(x rarr1)(tan^(2)(x-1))/(x^(3)-x^(2)-x+1)]

The value of lim_(x rarr oo)(2x-3sin^(-1)x)/(3x+2tan^(-1)x) equal to

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is