Home
Class 12
MATHS
if |x| <1 then (L t)(n->oo)(1+x)(1+x^...

if `|x| <1 ` then `(L t)_(n->oo)(1+x)(1+x^2)(1+x^4)........(1+x^(2n))=`

A

`1/(x-1)`

B

`1/(1-x)`

C

`1-x`

D

`x-1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

if |x|<1 then (Lt)_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))......*(1+x^(2n))=

f(x)=lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))..........(1+x^(2^(n-1))) then

Lim it_(n rarr oo){(1+x)(1+x^(2))(1+x^(4))......(1+x^(2^(n)))}= if |x|<1 has the value equal to

If |x|<1 , then lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^n))=

Prove by mathematical induction that (1)/(1+x)+(2)/(1+x^2)+(4)/(1+x^4)+.....+(2^n)/(1+x^(2^n))=(1)/(x-1)+(2^(n+1))/(1-x^(2^(n+1))) where , |x|ne 1 and n is non - negative integer.

The coefficient of x^(2) in (1+x)(1+2x)(1+4x)...(1+2^(n)x)

Let f(x)=x+(1-x)x^(3)+(1-x)(1-x^(2))x^(3)+.........+(1-x)(1-x^(2))......*(1-x^(n-1))x^(n);(n>=4) then :

Let f(x) = underset(n rarr oo)("Lim")( 2x^(2n) sin""(1)/(x) +x)/(1+x^(2n)) then find underset( x rarr -oo)("Lim") f(x)