Home
Class 12
MATHS
lim(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +....

`lim_(x->oo)((1^(1/x) +2^(1/x) +3^(1/x) +...+n^(1/x))/n)^(nx)` is equal to

A

`|___(n)`

B

`n`

C

`|___(n-1)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((1^(x)+2^(x)+.........*+n^(x))/(n))^((1)/(x)) is equal

lim_ (x rarr oo x rarr oo) ((1 ^ ((1) / (x)) + 2 ^ ((1) / (x)) + 3 ^ ((1) / (x)) + ... + n ^ ((1) / (x))) / (n)) ^ (nx) is

lim_ (x rarr oo) ((1 ^ ((1) / (x)) + 2 ^ ((1) / (x)) + 3 ^ ((1) / (x)) ++ n ^ ((1 ) / (x))) / (n)) ^ (nx), n in N

If lim_(x rarr(oo) (1+(1)/(x(x+2)))^(x^(2))(1+(1)/(x(x+4)))^(-x^(2)) is equal to e^(n) then n is equal to

lim_(x->oo)(e^x((2^(x^n))^(1/(e^(x)))-(3^(x^n))^(1/(e^(x)))))/(x^n), n in N, is equal to

(lim_(xto oo) ((x+3)/(x+1))^(x+1) is equal to

Let f : R toR " be a real function. The function "f" is double differentiable. If there exists "ninN" and "p inR" such that "lim_(x to oo)x^(n)f(x)=p" and there exists "lim_(x to oo)x^(n+1)f(x), "then" lim_(x to oo)x^(n+1)f'(x) is equal to

The value of lim_(x rarr oo)(2x^((1)/(2))+3x^((1)/(3))+4x^((1)/(4))+......+nx^((1)/(n)))/((2x-3)^((1)/(2))+(2x-3)^((1)/(3))+......+(2x-3)^((1)/(n))) is equal to