Home
Class 12
MATHS
lim(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3...

`lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3`

A

1

B

-1

C

`1/3`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

Evaluate: lim_ (n rarr oo) (1 * 2 + 2 * 3 + 3 * 4 + ... + n (n + 1)) / (n ^ (3))

lim_(n->oo) [ (1^3+ 2^3 + 3^3 -------n^3)/n^4]

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

Find lim_(n rarr oo)((1.3.5...(2n-1)}(n+1)^(4)]+[n^(4)(1.3.5...(2n-1)) (2n+1)]

Find lim_ (n rarr oo) (n ^ (3) + a) (n + 1) ^ (3) a] ^ (- 1) (2 ^ (n + 1) + a) (2 ^ (n) + a) ^ (- 1)

lim_(n rarr oo) (1+4+9+16+...+n^(2))/(4n^(3)+1)= _______.

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is