Home
Class 12
MATHS
lim(xto0)(sinx^(4)-x^(4)cosx^(4)+x^(20))...

`lim_(xto0)(sinx^(4)-x^(4)cosx^(4)+x^(20))/(x^(4)(e^(2x^(4))-1-2x^(4)))` is

A

0

B

`-1/6`

C

`1/6`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\sin(x^4) - x^4 \cos(x^4) + x^{20}}{x^4 (e^{2x^4} - 1 - 2x^4)}, \] we will use Taylor series expansions for the functions involved. ### Step 1: Expand \(\sin(x^4)\) and \(\cos(x^4)\) Using Taylor series, we have: - \(\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots\) - \(\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots\) Thus, for \(\sin(x^4)\): \[ \sin(x^4) = x^4 - \frac{x^{12}}{6} + O(x^{20}), \] and for \(\cos(x^4)\): \[ \cos(x^4) = 1 - \frac{x^8}{2} + O(x^{16}). \] ### Step 2: Substitute the expansions into the limit Now substituting these expansions into the limit expression: \[ \sin(x^4) - x^4 \cos(x^4) + x^{20} = \left(x^4 - \frac{x^{12}}{6} + O(x^{20})\right) - x^4 \left(1 - \frac{x^8}{2} + O(x^{16})\right) + x^{20}. \] This simplifies to: \[ x^4 - \frac{x^{12}}{6} - x^4 + \frac{x^{12}}{2} + x^{20} + O(x^{20}) = \left(\frac{1}{2} - \frac{1}{6}\right)x^{12} + x^{20} + O(x^{20}). \] Calculating the coefficient: \[ \frac{1}{2} - \frac{1}{6} = \frac{3}{6} - \frac{1}{6} = \frac{2}{6} = \frac{1}{3}. \] Thus, we have: \[ \sin(x^4) - x^4 \cos(x^4) + x^{20} = \frac{1}{3} x^{12} + O(x^{20}). \] ### Step 3: Expand \(e^{2x^4}\) Using the Taylor series for \(e^x\): \[ e^{2x^4} = 1 + 2x^4 + \frac{(2x^4)^2}{2!} + O(x^{12}) = 1 + 2x^4 + 2x^8 + O(x^{12}). \] Thus, \[ e^{2x^4} - 1 - 2x^4 = 2x^8 + O(x^{12}). \] ### Step 4: Substitute into the limit Now substituting into the limit: \[ \lim_{x \to 0} \frac{\frac{1}{3} x^{12} + O(x^{20})}{x^4 (2x^8 + O(x^{12}))} = \lim_{x \to 0} \frac{\frac{1}{3} x^{12}}{2x^{12} + O(x^{16})}. \] ### Step 5: Simplify the limit This simplifies to: \[ \lim_{x \to 0} \frac{\frac{1}{3}}{2 + O(x^4)} = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}. \] ### Final Answer Thus, the limit is: \[ \boxed{\frac{1}{6}}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin x^(4)-x^(4)cos x^(4))/(x^(4)(e^(2x4)-1-2x^(4)))(1)/(3) b.(1)/(2) c.(1)/(6)d.2

Evaluate lim_(xto0) (e^(x^(2))-cosx)/(x^(2))

lim_(xto0) (x^(4)(cot^(4)x-cot^(2)x+1))/((tan^(4)x-tan^(2)x+1)) is equal to

lim_(xto1)(x+x^(4)+x^(9)+……….+x^(n^(2))-n)/(x-1) is

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

lim_(xto0)(1-cos(x^(2)))/(x^(3)(4^(x)-1)) is equal to

lim_(xto0) ((cos x)^(1//2)-(cosx)^(1//3))/(sin^2x) is

Evaluate lim_(xto0) (1-cos(1-cosx))/(x^(4)).