Home
Class 12
MATHS
lim(n->oo) (1.n+2(n-1)+3(n-2)+....+n.1)/...

`lim_(n->oo) (1.n+2(n-1)+3(n-2)+....+n.1)/(1^2+2^2+3^2+...+n^2)=`

A

`1/2`

B

`1/3`

C

`1/4`

D

1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_ (n rarr oo) (1.n + 2 (n-1) +3 (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2) + 3 ^ ( 2) + ... + n ^ (2))

The value of lim_ (n rarr oo) (1.n + 2 * (n-1) + 3 * (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2 ) + ... + n ^ (2))

underset n rarr oo n has the value: Lim_ (n rarr oo) (1 * n + 2 (n-1) +3 (n-2) + ...... + n.1) / (1 ^ ( 2) + 2 ^ (2) + 3 ^ (2) + ...... + n ^ (2))

lim_ (n rarr oo) [(1 * n + 2 (n-1) + ... + n * 1) / (1 ^ (3) + 2 ^ (3) + ... + n ^ (3) ) +1] ^ (n)

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo) (2 ^ (n) -1) / (2 ^ (n) +1)

lim_ (n rarr oo n rarr oo) (1.n ^ (2) +2 (n-1) ^ (2) +3 (n-2) + ... + n.1 ^ (2)) / ( 1 ^ (3) + 2 ^ (3) + ... n ^ (3))

lim_ (n rarr oo) [(1+ (1) / (n ^ (2)))) (1+ (2 ^ (2)) / (n ^ (2))) (1+ (3 ^ (2) ) / (n ^ (2))) ...... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))