Home
Class 12
MATHS
tan^(-1)(cotx)...

`tan^(-1)(cotx)`

A

`f(x)` is periodic with period `pi`

B

f(x) is discontinuous at `x=(pi)/2, (3pi)/2`

C

f(x) is not differential at `x= pi , 99 pi , 100 pi `

D

`f'(x)=-1`, for `2n pi lt x lt (2n+1)pi`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)(cosecx+cotx)]=

int tan^(-1)(cosecx - cotx)dx = ?

(1)/(1-cotx)

If y=cot^(-1)(cotx), then (dy)/(dx) is

e^(cotx)

int_(-pi)^(5pi)cot^(-1)(cotx)dx equals

Differentiate the following w.r.t. x: (i) sin^(-1)2x (ii) tan^(-1)sqrtx (iii) cos^(-1)(cotx)

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

What is the value of (cotx)/(1-tanx)+(tanx)/(1-cotx) ?