Home
Class 12
MATHS
The function f(x)=1+|tanx| is...

The function `f(x)=1+|tanx|` is

A

Continuous everywhere

B

Discontinuous when `x=npi,n epsilon Z`

C

Not differntiable when `x=(2n+1)(pi)/2, n epsilon Z`

D

Discontinuous at `x=(2n+1)(pi)/2, n epsilon Z` and not differntiable at `x=(npi)/2, n epsilon Z`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=tanx-x

The function f(x)=(x)/(1+x tanx )

Find the number of points where the function f(x)=max|tanx|,cos|x|) is non-differentiable in the interval (-pi,pi) .

The domain of the function f(x)=1/(x-1) is

The function f(x)=tanx+(1)/(x), AA x in (0, (pi)/(2)) has

What is the derivative of the function f(x) = e^(tanx)+ln(secx)-e^(lnx)at x=(pi)/(4) ?

Verify Rolle's Theorem for the functions : f(x)=tanx , defined in the interval [0,pi] .

The function f(x)=(K tan x+2)/(tanx +1) is decreasing for all values of x then (A) K (B) K>1 (C) K (D) K>2