Home
Class 12
MATHS
If f(x)=sum(n=0)^oo x^n/(n!)(loga)^n, th...

If `f(x)=sum_(n=0)^oo x^n/(n!)(loga)^n`, then at `x = 0, f(x)`

A

has no limit

B

is discontinuous

C

is continuous but not differentiable

D

is differentiable

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sum_(n=0)^(oo)(x^(n))/(n!)(log a)^(n), then at x=0,f(x)

Given x in(-1,0)uu(0,1) and f(x)=sum_(n=0)^(oo)x^(n)(-1)^((n(n+1))/(2)) The function f(x) is equivalent to a rational function

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1) then for x>0,y>0,f(xy) is equal to

If f(x)=lim_(n rarr oo)n(x^((1)/(n))-1), then f or x>0,y>0,f(xy) is equal to : f(x)f(y) (b) f(x)+f(y)f(x)-f(y)(d) none of these

If x = sum_(n=0)^(oo) a^(n), y=sum_(n=0)^(oo) b^(n), z = sum_(n=0)^(oo) C^(n) where a,b,c are in A.P. and |a| lt 1, |b| lt 1, |c| lt 1 , then x,y,z are in

Let x= sum_(n=0)^oo (-1)^n (tantheta)^(2n) and y = sum_(n=0)^oo (costheta)^(2n) qhere theta in (0,pi/4) , then

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

If x=sum_(n=0)^oo a^n, y=sum_(n=0)^oo b^n where |a|<1,|b|<1 then prove that sum_(n=0)^oo (ab)^n=(xy)/(x+y-1)

sum_ (n = 0) ^ (oo) (- 1) ^ (n) x ^ (n + 1) =