Home
Class 12
MATHS
Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x...

Let `f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):}`
Where [ ] denotes the greatest integer function. Then,

A

f(x) is discontinuous at x = 0

B

f (x) is continuous at x = 0

C

`lim_(x to 0)f(x)` exists

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = 0 \), we need to analyze the left-hand limit, right-hand limit, and the value of the function at that point. Given the function: \[ f(x) = \begin{cases} \frac{x(e^{[x] + x} - 4)}{[x] + |x|} & \text{if } x \neq 0 \\ 3 & \text{if } x = 0 \end{cases} \] where \([x]\) denotes the greatest integer function. ### Step 1: Evaluate \( f(0) \) The value of the function at \( x = 0 \) is given as: \[ f(0) = 3 \] ### Step 2: Calculate the right-hand limit as \( x \to 0^+ \) For \( x \to 0^+ \): - \([x] = 0\) - \(|x| = x\) Thus, the expression simplifies to: \[ f(x) = \frac{x(e^{0 + x} - 4)}{0 + x} = \frac{x(e^{x} - 4)}{x} = e^{x} - 4 \] Now, we find the limit: \[ \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (e^{x} - 4) = e^{0} - 4 = 1 - 4 = -3 \] ### Step 3: Calculate the left-hand limit as \( x \to 0^- \) For \( x \to 0^- \): - \([x] = -1\) - \(|x| = -x\) Thus, the expression simplifies to: \[ f(x) = \frac{x(e^{-1 + x} - 4)}{-1 - x} = \frac{x(e^{-1 + x} - 4)}{-1 - x} \] As \( x \to 0^- \), we can evaluate the limit: \[ \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} \frac{x(e^{-1} - 4)}{-1} = \frac{0 \cdot (e^{-1} - 4)}{-1} = 0 \] ### Step 4: Compare limits and function value We have: - \( \lim_{x \to 0^+} f(x) = -3 \) - \( \lim_{x \to 0^-} f(x) = 0 \) - \( f(0) = 3 \) Since the left-hand limit and right-hand limit are not equal, and neither is equal to \( f(0) \), we conclude that \( f(x) \) is discontinuous at \( x = 0 \). ### Conclusion The function \( f(x) \) is discontinuous at \( x = 0 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)={{:(,sum_(r=0)^(x^(2)[(1)/(|x|)])r,x ne 0),(,k,x=0):} where [.] denotes the greatest integer function. The value of k for which is continuous at x=0, is

Let f(x)={{:(x[(1)/(x)]+x[x],if, x ne0),(0,if,x=0):} (where [x] denotes the greatest integer function). Then the correct statement is/are

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then